Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Nanotechnol ; 16(7): 1169-1181, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33308383

RESUMO

Developing a delivery vehicle to protect siRNA from degradation is a significant challenge. To solve this challenge, researchers attempted to use protein-based nanoparticles to deliver siRNA with limited to moderate success. However, a systematic investigation of comparing the ability of different protein-based nanoparticles as vehicles to deliver siRNA stably within cells is still unavailable. Therefore, in this study we synthesized a library of both non-targeted (proteinsiRNA) nanoparticles (NPs) and targeted (antibody conjugated protein-siRNA) NPs and evaluated ability to stably deliver siRNA in to cells to silence the gene of interest. We investigated nanoparticles of casein, bovine serum albumin, and gelatin for the delivery of siRNA. We synthesized and characterized a total of 12 nanoconjugates; in these conjugates, we either encapsulated, electrostatically attached, or covalently conjugated siRNA. We evaluated the efficiency of attaching siRNA to nanoconjugates, stability, and cellular delivery. The ability of siRNA to silence the protein of interest in cancer cells was also investigated. Among non-targeted conjugates, BSA matrix imparted relatively high stability to siRNA when encapsulated. Among targeted nanoconjugates, gelatin nanoparticles rendered high stability to siRNA upon covalent conjugation to the surface. On comparing with both targeted and non-targeted NPs for release of siRNA within cells, antibody-gelatin-siRNA conjugate exhibited high release and functional activity (down-regulation of target protein levels) within the cells as confirmed by both fluorescence imaging and Western blotting. In summary, our investigations show that targeted gelatin nanoparticles and non-targeted BSA nanoparticles possess high stability and excellent gene suppression capabilities and warrants further studies. We can extend the results from this study to develop stable siRNA delivery vehicles to specifically silence the protein of interest.


Assuntos
Nanopartículas , Linhagem Celular Tumoral , Gelatina , Nanoconjugados , RNA Interferente Pequeno , Soroalbumina Bovina
2.
Nanomedicine ; 20: 102007, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31085346

RESUMO

Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality with the 5-year survival rate at a dismal 16% for the past 40 years. Drug resistance is a major obstacle to achieving long-term patient survival. Identifying and validating molecular biomarkers responsible for resistance and thereby adopting multi-directional therapy is necessary to improve the survival rate. Previous studies indicated ~20% of tyrosine kinase inhibitor (TKI) resistant NSCLC patients overexpress AXL with increase in EMT and decrease in p53 expression. To overcome the resistance, we designed gelatin nanoparticles covalently conjugated with EGFR targeting antibody and siRNA (GAbsiAXL). GAbsiAXL efficiently silences AXL, decreases mTOR and EMT signaling with concomitant increase in p53 expression. Because of the molecular changes, the AXL silencing sensitizes the cells to TKI. Our results show AXL overexpression has an important role in driving TKI resistance through close association with energy-dependent mitochondrial pathways.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Transição Epitelial-Mesenquimal , Nanoconjugados/química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Anticorpos/química , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Gelatina/química , Redes Reguladoras de Genes , Inativação Gênica , Humanos , Neoplasias Pulmonares , Metaloproteinases da Matriz/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tirosina Quinase Axl
3.
RSC Adv ; 8(55): 31510-31514, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35548247

RESUMO

We describe a novel synthetic strategy for conjugating HMGA2 siRNA and the HMGA aptamer to the nucleolin aptamer and nucleolin antibody, respectively. Our studies demonstrate that these conjugates inhibit cell proliferation in retinoblastoma cells.

4.
Dalton Trans ; 46(42): 14572-14583, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-28485418

RESUMO

A thiolated bombesin peptide was conjugated to Au-DTDTPA nanoconstructs to obtain BBN-Au-DTDTPA targeted to the gastrin releasing peptide receptor (GRPr). Different analytical techniques showed that this conjugate shares similar physico-chemical properties with Au-DTDTPA; HPLC and XPS analyses corroborated the attachment of the bioactive peptide to the AuNPs surface. Competitive binding assays in PC3 cancer cells showed that these BBN-containing AuNPs have high affinity for GRPr. BBN-Au-DTDTPA was successfully radiolabeled with 99mTc and showed high in vitro stability towards different biological media and substrates, except for glutathione (GSH). In vitro and in vivo studies, based on gamma-counting (99mTc content) and neutron activation analysis (Au content), indicated the release of the DTDTPA coating from the AuNPs. Probably, the "peeling" of the layered-aminocarboxylate coating is GSH-mediated and involves the cleavage of the DTDTPA disulfide bonds and/or Au-S bonds. These results render BBN-Au-DTDTPA an interesting platform deserving further evaluation in target-specific GSH-mediated drug delivery.

5.
Sci Rep ; 6: 30245, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27530552

RESUMO

A tri-block nanoparticle (TBN) comprising of an enzymatically cleavable porous gelatin nanocore encapsulated with gefitinib (tyrosine kinase inhibitor (TKI)) and surface functionalized with cetuximab-siRNA conjugate has been synthesized. Targeted delivery of siRNA to undruggable KRAS mutated non-small cell lung cancer cells would sensitize the cells to TKI drugs and offers an efficient therapy for treating cancer; however, efficient delivery of siRNA and releasing it in cytoplasm remains a major challenge. We have shown TBN can efficiently deliver siRNA to cytoplasm of KRAS mutant H23 Non-Small Cell Lung Cancer (NSCLC) cells for oncogene knockdown; subsequently, sensitizing it to TKI. In the absence of TKI, the nanoparticle showed minimal toxicity suggesting that the cells adapt a parallel GAB1 mediated survival pathway. In H23 cells, activated ERK results in phosphorylation of GAB1 on serine and threonine residues to form GAB1-p85 PI3K complex. In the absence of TKI, knocking down the oncogene dephosphorylated ERK, and negated the complex formation. This event led to tyrosine phosphorylation at Tyr627 domain of GAB1 that regulated EGFR signaling by recruiting SHP2. In the presence of TKI, GAB1-SHP2 dissociation occurs, leading to cell death. The outcome of this study provides a promising platform for treating NSCLC patients harboring KRAS mutation.


Assuntos
Antineoplásicos/farmacologia , Cetuximab/farmacologia , Sistemas de Liberação de Medicamentos , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas p21(ras)/genética , Quinazolinas/farmacologia , RNA Interferente Pequeno/genética , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cetuximab/química , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Gefitinibe , Gelatina/química , Humanos , Nanoconjugados/química , Nanoconjugados/ultraestrutura , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Interferente Pequeno/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais
6.
Langmuir ; 32(19): 4877-85, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27088307

RESUMO

Three-dimensional nanocomposites prepared using two different families of nanomaterials holds significant relevance pertaining to biological applications. However, integration of the two distinct nanomaterials with precision to control the overall compositional homogeneity of the resulting 3D nanocomposite is a synthetic challenge. Conventional reactions result in nanocomposites with heterogeneous composition and render useless. To address this challenge, we have developed a fluidics-mediated process for controlling the interaction of nanoparticles to yield a compositional uniform multidimensional nanoparticle; as an example, we demonstrated the integration of gold nanoparticles on gelatin nanoparticles. The composition of the nanocomposite is controlled by reacting predetermined number of gold nanoparticles to a known number of thiolated gelatin nanoparticles at any given time within a defined cross-sectional area. Using the fluidics process, we developed nanocomposites of different composition: [gelatin nanoparticles-(gold nanoparticles)x] where xaverage = 2, 12, or 25. The nanocomposites were further surface conjugated with organic molecules such as fluorescent dye or polyethylene glycol (PEG) molecules. To study the biological behavior of nanocomposite, we investigated the cellular internalization and trafficking characteristics of nanocomposites in two human cancer cell lines. The nanocomposites exhibited a three-stage cellular release mechanism that enables the translocation of gold nanoparticles within various cellular compartments. In summary, the three-dimensional nanocomposite serves as a novel platform for developing well-defined protein-metal nanocomposites for potential drug delivery, sensory, and molecular imaging applications.


Assuntos
Espaço Intracelular/metabolismo , Nanopartículas Metálicas/química , Nanocompostos/química , Proteínas/química , Transporte Biológico , Linhagem Celular , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Gelatina/química , Humanos , Polietilenoglicóis/química
7.
Bioconjug Chem ; 27(4): 1153-64, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27003101

RESUMO

To get a better insight on the transport mechanism of peptide-conjugated nanoparticles to tumors, we performed in vivo biological studies of bombesin (BBN) peptide functionalized gold nanoparticles (AuNPs) in human prostate tumor bearing mice. Initially, we sought to compare AuNPs with thiol derivatives of acyclic and macrocyclic chelators of DTPA and DOTA types. The DTPA derivatives were unable to provide a stable coordination of (67)Ga, and therefore, the functionalization with the BBN analogues was pursued for the DOTA-containing AuNPs. The DOTA-coated AuNPs were functionalized with BBN[7-14] using a unidentate cysteine group or a bidentate thioctic group to attach the peptide. AuNPs functionalized with thioctic-BBN displayed the highest in vitro cellular internalization (≈ 25%, 15 min) in gastrin releasing peptide (GRP) receptor expressing cancer cells. However, these results fail to translate to in vivo tumor uptake. Biodistribution studies following intravenous (IV) and intraperitoneal (IP) administration of nanoconjugates in tumor bearing mice indicated that the presence of BBN influences to some degree the biological profile of the nanoconstructs. For IV administration, the receptor-mediated pathway appears to be outweighed by the EPR effect. By contrast, in IP administration, it is reasoned that the GRPr-mediated mechanism plays a role in pancreas uptake.


Assuntos
Ouro/química , Nanopartículas Metálicas , Neoplasias Experimentais/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos
8.
Contrast Media Mol Imaging ; 10(3): 188-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25169942

RESUMO

Gold nanomaterials (AuNPs) represent a promising new class of contrast agents for X-ray computed tomographic (CT) imaging in both research and clinical settings. These materials exhibit superior X-ray absorption properties compared with other iodinated agents, and thus require lower injection doses. Gold is nonimmunogenic and therefore contributes to safety profile in living specimens. Unfortunately, most reports on the use of AuNPs as X-ray CT enhancers only demonstrate marginal enhancement of the intended anatomical structure. In this study, we demonstrate the dramatic properties of gold nanorods (GNR) to serve as robust X-ray CT contrast-enhancing agent for selective imaging of the spleen. These organ-specific uptake properties were delineated by performing longitudinal CT imaging of living mice that were dosed with GNR at 2 day intervals. Rapid uptake in spleen was noted within 12 h of first systemic administration with a change in contrast enhancement of 90 Hounsfield units (ΔHU = 90) and with two subsequent injections a total contrast enhancement of over 200 HU was observed. The resulting images provide excellent contrast that will enable the detailed anatomical visualization and study of a range of pre-clinical models of spleen disease including infection and cancer.


Assuntos
Meios de Contraste/química , Ouro/química , Nanotubos/química , Baço/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Animais , Cetrimônio , Compostos de Cetrimônio/química , Fígado/diagnóstico por imagem , Masculino , Camundongos , Microscopia Eletrônica de Transmissão
9.
Bioconjug Chem ; 25(8): 1565-79, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25020251

RESUMO

The nature of interaction and mechanism of internalization of receptor-avid peptide nanoparticles with cells is not yet completely understood. This article describes the cellular internalization mechanism and intracellular trafficking of peptide conjugated receptor targeted porous Gold nanocages (AuNCs) in cancer cells. We synthesized and characterized a library of AuNCs conjugated with bombesin (BBN) peptide. Evidence of selective affinity of AuNC-BBN toward gastrin releasing peptide receptors (GRPR) was obtained using radiolabeled competitive cell binding assay. Endocytic mechanism was investigated using cell inhibitor studies and monitored using optical and transmission electron microscopy (TEM). Results show AuNC-BBN uptake in PC3 cells is mediated by clathrin mediated endocytosis (CME). Indeed, in the presence of CME inhibitors, AuNC-BBN uptake in cells is reduced up to 84%. TEM images further confirm CME characteristic clathrin coated pits and lysosomal release of AuNCs. These results demonstrate that peptide ligands conjugated to the surface of nanoparticles maintain their target specificity. This bolsters the case for peptide robustness and its persisting functionality in intracellular vehicular delivery systems.


Assuntos
Bombesina/química , Bombesina/metabolismo , Clatrina/metabolismo , Endocitose , Ouro/química , Nanoestruturas , Linhagem Celular Tumoral , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo
10.
J Biomed Nanotechnol ; 10(3): 383-92, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24730234

RESUMO

The goal of our study was to demonstrate the utility of nanocrystalline gold as an X-ray contrast agent for imaging tumor in living subjects. Even though significant progress has been achieved in this area by researchers, clinical translation remains challenging. Here, we investigated biocompatible gum Arabic stabilized gold nanocrystals (GA-AuNPs) as X-ray contrast agent in tumor bearing mice and dog. Single intratumoral injections of GA-AuNP resulted in X-ray contrast change of -26 HU in the tumor region after 1 hour post-injection period. Subsequently, five intratumoral injections were performed in the mice. The change in CT number in tumor region is not progressive; rather it reaches a saturation point after fourth injection. These data suggested that accumulation of GA-AuNP reaches a threshold limit within a short time period (5 h), and is retained in the tumor tissue for the rest of the period of investigation. A pilot study was conducted in a client-owned dog presented with collision tumor of thyroid carcinoma and osteosarcoma. In this study, GA-AuNP was injected intratumorally in dog and a contrast enhancement of 12 deltaHU was observed. The CT images of both mice and dog clearly demonstrated that GA-AuNP was effectively distributed and retained throughout the tumor site. The CT data obtained by the present study would provide the crucial dosimetry information for strategic therapy planning using this construct. Both mice and dog did not show any clinical changes, thereby confirming that GA-AuNP did not induce toxicity and can be explored for future clinical applications.


Assuntos
Meios de Contraste , Ouro , Nanopartículas Metálicas , Neoplasias/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Animais , Cães , Avaliação Pré-Clínica de Medicamentos , Feminino , Goma Arábica/química , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias/terapia , Imagens de Fantasmas , Prognóstico , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/veterinária , Células Tumorais Cultivadas
11.
Chem Commun (Camb) ; 50(25): 3281-4, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24480799

RESUMO

In this communication, we describe a novel synthetic method for fabricating multicomponent gold nanoparticles containing both gallium ions and biomolecules on the surface. Detailed compositional analysis, using STEM-HAADF and EELS spectroscopy, confirmed the crystalline nature of gold and chelation of gallium ions. The presence of the biomolecule was validated using conventional ELISA.


Assuntos
Quelantes/química , Gálio/química , Ouro/química , Nanopartículas Metálicas/química , Ácido Pentético/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quelantes/farmacologia , Gálio/farmacologia , Ouro/farmacologia , Humanos , Nanopartículas Metálicas/administração & dosagem , Ácido Pentético/farmacologia
12.
Bioorg Med Chem Lett ; 24(1): 317-24, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24295787

RESUMO

Although dual inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipoxygenase (5-LOX) enzymes is highly effective than targeting COX or LOX alone, there are only a few reports of examining such compounds in case of colorectal cancers (CRC). In the present work we report that the novel di-tert-butyl phenol-based dual inhibitors DTPSAL, DTPBHZ, DTPINH, and DTPNHZ exhibit significant cytotoxicity against human CRC cell lines. Molecular docking studies revealed a good fit of these compounds in the COX-2 and 5-LOX protein cavities. The inhibitors show significant inhibition of COX-2 and 5-LOX activities and are effective against a panel of human colon cancer cell lines including HCA-7, HT-29, SW480 and intestinal Apc10.1 cells as well as the hyaluronan synthase-2 (Has2) enzyme over-expressing colon cancer cells, through inhibition of the Hyaluronan/CD44v6 cell survival pathway. Western blot analysis and qRT-PCR analyses indicated that the di-tert-butyl phenol-based dual inhibitors reduce the expression of COX-2, 5-LOX, and CD44v6 in human colon cancer HCA-7 cells, while the combination of CD44v6shRNA and DTPSAL has an additional inhibitory effect on CD44v6 mRNA expression. The synergistic inhibitory effect of Celecoxib and Licofelone on CD44v6 mRNA expression suggests that the present dual inhibitors down-regulate cyclooxygenase and lipoxygenase enzymes through CD44v6. The compounds also exhibited enhanced antiproliferative potency compared to standard dual COX/LOX inhibitor, viz. Licofelone. Importantly, the HA/CD44v6 antagonist CD44v6shRNA in combination with synthetic compounds had a sensitizing effect on the cancer cells which enhanced their antiproliferative potency, a finding which is crucial for the anti-proliferative potency of the novel synthetic di-tert-butyl phenol based dual COX-LOX inhibitors in colon cancer cells.


Assuntos
Antineoplásicos/farmacologia , Araquidonato 5-Lipoxigenase/metabolismo , Ciclo-Oxigenase 2/metabolismo , Hidrazonas/farmacologia , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Inibidores de Lipoxigenase/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
13.
Recent Results Cancer Res ; 194: 133-47, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22918758

RESUMO

Molecular imaging probes are a special class of pharmaceuticals that target specific biochemical signatures associated with disease and allow for noninvasive imaging on the molecular level. Because changes in biochemistry occur before diseases reach an advanced stage, molecular imaging probes make it possible to locate and stage disease, track the effectiveness of drugs, treat disease, monitor response, and select patients to allow for more personalized diagnosis and treatment of disease. Targeting agents radiolabeled with positron emitters are of interest due to their ability to quantitatively measure biodistribution and receptor expression to allow for optimal dose determinations. (68)Ga is a positron emitter, which allows for quantitative imaging through positron emission chromatography (PET). The availability of (68)Ga from a generator and its ability to form stable complexes with a variety of chelates hold promise for expanding PET utilization to facilities unable to afford their own cyclotron. Nanoparticles conjugated with various proteins and peptides derived from phage display that can be selectively targeted are being developed and evaluated for guided imaging and therapy. Herein we highlight some initial efforts in combining the enhanced selectivity of nanoparticles and peptides with (68)Ga for use as molecular imaging probes.


Assuntos
Radioisótopos de Gálio , Nanopartículas Metálicas , Neoplasias/diagnóstico , Biblioteca de Peptídeos , Compostos Radiofarmacêuticos , Partículas alfa , Animais , Ouro , Humanos , Nanopartículas Metálicas/uso terapêutico , Neoplasias/terapia
14.
Anal Chem ; 84(21): 9478-84, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23004345

RESUMO

In this paper, we describe a novel strategy for the fabrication of a nanosensor for detecting luteinizing hormone (LH) of sheep using a gold nanoparticle-peptide conjugate. A new peptide sequence "CDHPPLPDILFL" (leutinizing hormone peptide, LHP) has been identified, using BLAST and Clustal W analysis, to detect antibody of LH (sheep). LHP has been synthesized and characterized, and their affinity toward anti-LH was established using enzyme linked immunosorbant assay (ELISA) technique. The thiol group in LHP directly binds with gold nanoparticles (AuNPs) to yield AuNP-LHP construct. Detailed physicochemical analysis of AuNP-LHP construct was determined using various analytical techniques. Nanosensor using gold nanoparticle peptide conjugate was developed on the basis of competitive binding of AuNP-LHP and LH toward anti-LH. Nitrocellulose membrane, precoated with anti-LH, was soaked in the mixture of AuNP-LHP and sample of analysis (LH). In the absence of LH (sheep), anti-LH coated on the membrane binds with AuNP-LHP, leading to a distinctive red color, while in the presence of LH, no color appeared in the membrane due to the interaction of anti-LH with LH thereby preventing the binding of AuNP-LHP with membrane bound anti-LH. The sensor assay developed in this study can detect LH (sheep) up to a minimal concentration of ∼50 ppm with a high degree of reproducibility and selectivity. The gold-nanoparticle-peptide based nanosensor would be a simple, portable, effective, and low cost technique for infield applications.


Assuntos
Técnicas Biossensoriais/instrumentação , Ouro/química , Hormônio Luteinizante/análise , Nanopartículas Metálicas/química , Sequência de Aminoácidos , Animais , Ensaio de Imunoadsorção Enzimática , Desenho de Equipamento , Hormônio Luteinizante/sangue , Hormônio Luteinizante/química , Oligopeptídeos/química , Propriedades de Superfície
15.
Proc Natl Acad Sci U S A ; 109(31): 12426-31, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22802668

RESUMO

Systemic delivery of therapeutic agents to solid tumors is hindered by vascular and interstitial barriers. We hypothesized that prostate tumor specific epigallocatechin-gallate (EGCg) functionalized radioactive gold nanoparticles, when delivered intratumorally (IT), would circumvent transport barriers, resulting in targeted delivery of therapeutic payloads. The results described herein support our hypothesis. We report the development of inherently therapeutic gold nanoparticles derived from the Au-198 isotope; the range of the (198)Au ß-particle (approximately 11 mm in tissue or approximately 1100 cell diameters) is sufficiently long to provide cross-fire effects of a radiation dose delivered to cells within the prostate gland and short enough to minimize the radiation dose to critical tissues near the periphery of the capsule. The formulation of biocompatible (198)AuNPs utilizes the redox chemistry of prostate tumor specific phytochemical EGCg as it converts gold salt into gold nanoparticles and also selectively binds with excellent affinity to Laminin67R receptors, which are over expressed in prostate tumor cells. Pharmacokinetic studies in PC-3 xenograft SCID mice showed approximately 72% retention of (198)AuNP-EGCg in tumors 24 h after intratumoral administration. Therapeutic studies showed 80% reduction of tumor volumes after 28 d demonstrating significant inhibition of tumor growth compared to controls. This innovative nanotechnological approach serves as a basis for designing biocompatible target specific antineoplastic agents. This novel intratumorally injectable (198)AuNP-EGCg nanotherapeutic agent may provide significant advances in oncology for use as an effective treatment for prostate and other solid tumors.


Assuntos
Anticarcinógenos/farmacocinética , Catequina/análogos & derivados , Ouro/farmacocinética , Nanopartículas Metálicas , Neoplasias da Próstata/tratamento farmacológico , Animais , Anticarcinógenos/farmacologia , Catequina/farmacocinética , Catequina/farmacologia , Linhagem Celular Tumoral , Feminino , Ouro/farmacologia , Radioisótopos de Ouro/farmacocinética , Radioisótopos de Ouro/farmacologia , Humanos , Masculino , Camundongos , Camundongos SCID , Tamanho da Partícula , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
Artigo em Inglês | MEDLINE | ID: mdl-21953803

RESUMO

The development of new treatment modalities that offer clinicians the ability to reduce sizes of tumor prior to surgical resection or to achieve complete ablation without surgery would be a significant medical breakthrough in the overall care and treatment of prostate cancer patients. The goal of our investigation is aimed at validating the hypothesis that Gum Arabic-functionalized radioactive gold nanoparticles (GA-(198) AuNP) have high affinity toward tumor vasculature. We hypothesized further that intratumoral delivery of the GA-(198) AuNP agent within prostate tumor will allow optimal therapeutic payload that will significantly or completely ablate tumor without side effects, in patients with hormone refractory prostate cancer. In order to evaluate the therapeutic efficacy of this new nanoceutical, GA-(198) AuNP was produced by stabilization of radioactive gold nanoparticles ((198) Au) with the FDA-approved glycoprotein, GA. This review will describe basic and clinical translation studies toward realization of the therapeutic potential and myriad of clinical applications of GA-(198) AuNP agent in treating prostate and various solid tumors in human cancer patients.


Assuntos
Ouro/química , Ouro/uso terapêutico , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Neoplasias da Próstata/radioterapia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/uso terapêutico , Humanos , Masculino
17.
Inorganica Chim Acta ; 372(1): 333-339, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21709763

RESUMO

Gold-thioguanine nanoconjugates (AuNP-TG) of size 3-4 nm were synthesized and the ratio between gold and 6-Thioguanine (TG) was estimated as ~1:1.5 using a cyanide digestion method and confirmed by flame atomic absorption spectroscopic analysis. AuNP-TG constructs showed high in vitro stability under different pH conditions and biologically relevant solutions for a period of 24 hours. Reaction of AuNP-TG with europium or platinum salts resulted in the formation of organized self-assembled metallo-networks.

18.
Pharm Res ; 28(2): 279-91, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20872051

RESUMO

PURPOSE: The purpose of the present study was to explore the utilization of cinnamon-coated gold nanoparticles (Cin-AuNPs) as CT/optical contrast-enhancement agents for detection of cancer cells. METHODS: Cin-AuNPs were synthesized by a "green" procedure, and the detailed characterization was performed by physico-chemical analysis. Cytotoxicity and cellular uptake studies were carried out in normal human fibroblast and cancerous (PC-3 and MCF-7) cells, respectively. The efficacy of detecting cancerous cells was monitored using a photoacoustic technique. In vivo biodistribution was studied after IV injection of Cin-AuNPs in mice, and also a CT phantom model was generated. RESULTS: Biocompatible Cin-AuNPs were synthesized with high purity. Significant uptake of these gold nanoparticles was observed in PC-3 and MCF-7 cells. Cin-AuNPs internalized in cancerous cells facilitated detectable photoacoustic signals. In vivo biodistribution in normal mice showed steady accumulation of gold nanoparticles in lungs and rapid clearance from blood. Quantitative analysis of CT values in phantom model revealed that the cinnamon-phytochemical-coated AuNPs have reasonable attenuation efficiency. CONCLUSIONS: The results indicate that these non-toxic Cin-AuNPs can serve as excellent CT/ photoacoustic contrast-enhancement agents and may provide a novel approach toward tumor detection through nanopharmaceuticals.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Neoplasias/diagnóstico , Intensificação de Imagem Radiográfica/métodos , Animais , Linhagem Celular Tumoral , Cinnamomum zeylanicum/química , Meios de Contraste/química , Fibroblastos , Humanos , Camundongos , Neoplasias/patologia , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Distribuição Tecidual
19.
Proc Natl Acad Sci U S A ; 107(19): 8760-5, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20410458

RESUMO

Development of cancer receptor-specific gold nanoparticles will allow efficient targeting/optimum retention of engineered gold nanoparticles within tumors and thus provide synergistic advantages in oncology as it relates to molecular imaging and therapy. Bombesin (BBN) peptides have demonstrated high affinity toward gastrin-releasing peptide (GRP) receptors in vivo that are overexpressed in prostate, breast, and small-cell lung carcinoma. We have synthesized a library of GRP receptor-avid nanoplatforms by conjugating gold nanoparticles (AuNPs) with BBN peptides. Cellular interactions and binding affinities (IC(50)) of AuNP-BBN conjugates toward GRP receptors on human prostate cancer cells have been investigated in detail. In vivo studies using AuNP-BBN and its radiolabeled surrogate (198)AuNP-BBN, exhibiting high binding affinity (IC(50) in microgram ranges), provide unequivocal evidence that AuNP-BBN constructs are GRP-receptor-specific showing accumulation with high selectivity in GRP-receptor-rich pancreatic acne in normal mice and also in tumors in prostate-tumor-bearing, severe combined immunodeficient mice. The i.p. mode of delivery has been found to be efficient as AuNP-BBN conjugates showed reduced RES organ uptake with concomitant increase in uptake at tumor targets. The selective uptake of this new generation of GRP-receptor-specific AuNP-BBN peptide analogs has demonstrated realistic clinical potential in molecular imaging via x-ray computed tomography techniques as the contrast numbers in prostate tumor sites are severalfold higher as compared to the pretreatment group (Hounsfield unit = 150).


Assuntos
Bombesina/farmacologia , Ouro/farmacologia , Nanopartículas Metálicas/química , Neoplasias/metabolismo , Receptores da Bombesina/metabolismo , Animais , Bombesina/administração & dosagem , Bombesina/química , Bombesina/farmacocinética , Linhagem Celular Tumoral , Ouro/administração & dosagem , Ouro/farmacocinética , Humanos , Injeções Intraperitoneais , Masculino , Nanopartículas Metálicas/administração & dosagem , Camundongos , Peso Molecular , Solubilidade/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos , Tomografia Computadorizada por Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Nanosci Nanotechnol ; 10(2): 719-25, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20352709

RESUMO

A one-step method for synthesis of bioconjugated gold nanoparticles is reported. A non-toxic and biocompatible phosphorus based reducing agent was used for reduction of gold (III) and formation of nanoparticles. Physicochemical properties of protein-A stabilized gold nanoparticls were investigated. Result of immunoassay experiments confirmed the potential of the synthesized anti-protein-A conjugated gold nanoparticles for use as a simple and inexpensive test for quantitative screening of protein-A samples.


Assuntos
Ouro , Nanopartículas Metálicas , Nanotecnologia , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...